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A b s t r a c t .  This work studies the build-up method  for the global minimization problem for molec- 
ular conformation, especially protein folding. The problem is hard  to solve for large molecules 
using general mlnimization approaches because of the enormous amount of required computation. 
We therefore propose a build-up process to systematically "construct" the optimal molecular 
structures. A prototype algoritlun is designed using the anisotropic effective energy simulated 
almealing method at each build-up stage. The algorithm has been implemented on the Intel 
iPSC/860 parallel computer, and tested with the Lemlard-Jones microcluster conformation prob- 
lem. The experiments showed that  the algorithm was effective for relatively large test problems, 
a~ad also very suitable for massively parallel computation. In particular, for the 72-atom Lelmard- 
Jones mlcrocluster, the algoritlma found a structure whose energy is lower than any others found 
in previous studies. 
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1. I n t r o d u c t i o n  

We are interested in developing general build-up algorithms for the global minimiza- 
tion problem for molecular conformation, especially protein folding. The problem is 
important  for biological studies [2]. But it is very difficult to solve because in theory 
even simple versions are .A/P-complete [7], and in practice the objective function 
usually contains too many local minimizers. Our model problem for this study is to 
find low energy structures of molecular clusters of identical atoms. Mathematically, 
the problem can be formulated as a global minimization problem for a nonlinear 
partially separable function. To be more specific, consider a molecular cluster of n 
atoms, let x = {x~ E 1% 3, i = 1 , . . .  ,n} represent the molecular structure with each 
xi specifying the spatial position of a tom i, and let the energy function be defined 
by/(~), 

f(x) = f i  h(llx~- ~ll), (1) 
i=l , j>i  
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where h is the pairwise energy function determined by the distance between each 
pair of atoms. Then the problem is 

m i ~  s f(x) (2) 

where S is the set of all possible structures. 
In recent years, the molecular conformation problem has been studied extensively 

in computational sciences, especially in the area of numerical optimization. Many 
approaches have been investigated, either deterministic or undeterministic, such 
as those in [3, 4, 11, 12, 15, 16, 18, 19, 22]. However, because of the enormous 
amount of required computation, most general minimization methods can only be 
applicable to small problem instances (< 100 atoms), while problems of biological 
interests tend to be very large (> 1000 atoms). 

In this paper, we study a general scheme, the build-up method, for large molecular 
conformation problems. In general, the build-up method is to break up the molecule 
into its components and then rebuild it. Then the global energy minimization 
is conducted in two stages: the first for the components and the second for the 
molecule. The latter is started from a combination of the components that have 
the lowest energies in isolation. With this method, the solution of a large problem 
will hopefully become feasible, as the computation for each component should be 
more affordable (if not, the process can be applied recursively), and the second stage 
minimization can be made less expensive than started from an arbitrary structure. 

The idea behind the build-up method is simple and straightforward, but whether 
or not it can be used effectively for large problems depends on many detMled 
factors such as the way of decomposing the molecule, the strategy for combining 
the components, and the method for the global minimization at each build-up stage. 
In this paper, we want to study the method and its related issues by considering 
the model problem in (2) and investigatir~g a prototype build-up algorithm for it. 
Especially, we want to study how the global minimization procedure at each build- 
up stage can be designed efficiently given simple strategies for decomposing the 
molecule and combining the components. 

In Section 2, we describe the prototype algorithm, its parallel implementation, 
and numerical experiments. The algorithm has been implemented on the Intel 
iPSC/860, and tested with the Lennard-Jones microcluster conformation problem. 
The experiments showed that the algorithm was effective for relatively large test 
problems, and also very suitable for massively parallel computation. In particular, 
for the 72-atom Lennard-Jones microcluster, the algorithm found a structure whose 
energy level is lower than any others found in previous studies. In Section 3, 
we describe the global minimization procedure used at each build-up stage. The 
procedure is designed specifically to take advantage of the build-up approach, and is 
a special anisotropic version of the effective energy simulated annealing algorithm 
proposed in [4]. Section 4 contains remarks on other related work and possible 
extensions of this study. 
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2. P a r a l l e l  B u i l d - U p  

A simple build-up strategy has been taken for the prototype algorithm. The idea 
can be explained by considering the simple microcluster conformation problem. For 
a cluster of n atoms, the algorithm assumes first that  the lowest energy structure of 
an (n--1)-atom cluster has been found. Then the algorithm uses the optimized (7~l)- 
atom cluster together with a new atom to construct an initial n-atom structure, 
with which a global minimization procedure is started to minimize the energy of the 
n-atom cluster. Starting with such an initial structure, the procedure can hopefully 
find in a more effective way the lowest energy structure of the n-atom cluster. 

To obtain the initial n-atom structure, the new atom is placed somewhere around 
the optimal structure of the (n--1)-atom cluster. Different positions for the new atom 
make different initial n-atom structures, which may lead to different conformation 
solutions. In our prototype algorithm, we make n-1  trials, each taking the initial 
structure with the new atom nearby one of atoms in the (n-1)-atom cluster. Even- 
tually, the lowest energy structure found in these trials is taken as the candidate 
for the best structure of the n-atom cluster. Note that n--1 trials involve n---1 global 
minimizations which might need a great amount  of computation. However, many 
trials could be avoided in practice by using problem specific heuristics. In any 
event, the minimizations are totally independent, and can be conducted in parallel 
with a very good efficiency. So the algorithm is naturally a parallel algorithm, and 
should also be suitable for massively parallel computation. 

The above process can be generalized to a molecule of n-components with each 
component containing more than one atoms. Here we suppose that energies of com- 
ponents are minimized first so that  each of them assumes a lowest energy structure. 

Figure 1 contains an outline of the prototype build-up process, where the simplest 
decomposition is assumed, i.e., the molecule always is decomposed into n compo- 
nents with each containing only one atom. Notation N~(x) for a 3-dimensional posi- 
tion x defines a neighborhood ofx .  Formally, N~(x) = {y e R 3, ]ly-xH < c, e > 0}. 
Also, x (k) for some integer k represents a 3-dimensional structure of a k-atom clus- 
ter, x (k) = {x~ k) E R 3, i = 1 , . . . , k }  where x~ k) represents the 3-dimensional 
position of atom i. Initial structures are constructed at Step 1 and 2. The energy 
of the cluster is minimized by the random search at Step 3. The method used for 
the random search is important  for the entire build-up process. A general random 
search is basically not sensitive to initial structures, and hence can not take advan- 
tages of the build-up approach. A special random search thus is required to exploit 
the problem structures constructed by the build-up process so that  short paths from 
initial structures to final solutions may be found. The motivation for pursuing the 
build-up approach is just  to explore such an efficient search process. In next section, 
we discuss the anisotropic random search method used in our algorithm. 

The build-up algorithm can be applied recursively to the (n-1)-atom (or (n-1)- 
component) cluster if its optimal structure is not available. In other words, the 
algorithm can be used systematically for small to large clusters so that solutions 
for larger and larger clusters can possibly be found. This process is similar to the 
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A l g o r i t h m  1 {Parallel Build- Up} 

1 I n p u t  x(n-1) * {optimal structure of (n-1)-atom cluster} 

2 For  i = 1 , . . . ,  n-1 do {initialize z( ~)} 

z~ ~)~ = ~i-(~-1)" 

For  i = 1 , . . . ,  n-1 do in pa ra l l e l  

x (n)~ �9 Nc(xl n)~ {add a new atom} 

S t a r t  random search w i t h  x (n)~ 

4 e n d  

Figure 1. The parallel build-up algori thm. 
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polyhedral growth scheme in [9] for the Lennard-Jones microcluster conformation, 
except that  the latter exploited problem specific information, and conducted only 
local minimization at each growing-up stage. The proposed build-up process here 
is more general and robust. 

The build-up process is certainly not optimal for many problems. As a mat ter  
of fact, most problems might need more specific ways of decomposing the molecule 
and combining the components, e.g., special build-up procedures were used for some 
polypeptides in [8, 17]. A better general approach to the build-up requires further 
research. However, this work is more concerned with how efficiently the global 
minimization, or the random search, at each build-up stage can be conducted given 
simple but general build-up strategies. 

The parallel build-up algorithm in Figure 1 has been implemented on the In- 
tel iPSC/860, and tested with the model problem in (2) using the Lennard-Jones 
pairwise potential function: 

1 2 
h(llyll)-ily1112 ibyll 6 (3) 

The function is widely used in molecular simulations, and provides a good model for 
the conformational energy that governs the behavior of particularly simple physical 
systems - molecular clusters of chemically inert atoms (e.g., argon). The conforma- 
tion of this type of molecular clusters, also called the Lennard-Jones microcluster 
conformation, has been studied by generating polyhedral sequences [9], by taking 
simulated annealing method [22], by searching special lattice structures [15, 24], 
etc. These results provide standards for testing new algorithms. 

In our previous study [4], the largest Lennard-Jones cluster whose optimal struc- 
ture was found by a general global search process was the cluster of 54 atoms. So 
to test the build-up algorithm for relatively large problems, we start the test with 
the cluster of 55 atoms. Then larger clusters with up to 75 atoms are tested in turn 
based on the best solutions found for their predecessors. The results obtained for 
these clusters are listed in Table 1 and compared with those obtained by the lattice 
search method in [15]. The results in [15] provide the best known solutions for most 
clusters with up to 147 atoms, which are used as standards for new findings. Note 
that  in Table 1, " - "  = the energy value in [15] was not obtained, "+" = the energy 
value in [15] was obtained, and "++" = the energy value is lower than that  in [15]. 

Our build-up algorithm found the best known energy values for most clusters 
in Table 1. Some values found by the algorithm were a bit higher than those by 
the lattice search method in [15]. However, for clusters of 66 and 72 atoms, the 
algorithm also found better solutions. The lower energy value for the cluster of 
66 atoms was also discovered in [24] by relaxing the lattice search method in [15] 
and conducting more extensive searches. But the new energy value for the 72-atom 
cluster was lower than any others found before. 

Table 2 illustrates further details about the performance of the algorithm for 
different initial structures . The energy values obtained by the algorithm for the 
72-atom cluster are listed, each corresponding to a different initial structure. The 
initial structure was generated by placing a new atom nearby one of atoms in the 
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Table 1. Low e n e r g y  va lues  o b t a i n e d  for the  L e n n a r d - J o n e s  ln icroc lus ters  of  
55 to 75 a t o m s .  Nota t ion:  Is - the  la t t i ce  search  m e t h o d ;  b u  - the  para l l e l  
bui ld-up algorit lma.  

I Low Energy Levels Found by LS and B U  I 
~t of  a t o m s  Is b u  r e m a r k  

55 -2.79248e4-02 -2.792486e4-02 4- 
56 -2.83643e4-02 -2.836438e4-02 4- 
57 -2.88343e4-02 .2.883425e+02 4- 
58 -2.94378e-{-02 -2.943784e4-02 4- 
59 -2.99738e4-02 -2.996164e4-02 -- 
60 -3.05876e4-02 -3.058756e-}-02 4- 
61 -3.12009e4-02 -3.120086e+02 + 
62 -3.17354e4-02 -3.172686e+02 �9 -- 
63 -3.23490e4-02 -3.234901e4-02 4- 
64 -3.29620e4-02 -3.296205e4-02 + 
65 -3.34915e4-02 -3.349148e4-02 4- 
66 -3.41043e4-02 -3.411108e4-02 4- 4- 
67 -3.47252e+02 -3.472516e4-02 4- 
68 -3.53395e4-02 -3.533774e-{-02 4- 
69 -3.59726e4-02 -3.597257e4-02 4- 
70 -3.66892e4-02 -3.660450e4-02 -- 
71 -3.73350e4-02 -3.733498e4-02 4- 
72 -3.78524e4-02 -3.786371 e4-02 4- 4- 
73 -3.84789e4-02 -3.839794e4-02 -- 
74 -3.90909e4-02 -3.893122e4-02 -- 
75 -3.96037e4-02 -3.957283e4-02 -- 

optimized 71-atom cluster. The vector x72 is the 3-dimensional position for the 72th 
atom, the new one. For an integer i, 1 < i < 71, Ne(z i )  is an ~-neighborhood ofxi, 
the position for the ith atom in the optimized 71-atom cluster. As we can see in 
Table 2, several initial structures led the algorithm to the lowest energy structures 
of the 72-atom cluster. Note that in Table 2, "-" = the best known energy value 
was not obtained, "+" = the best known energy value was obtained, and "++" = 
the energy value is lower than the best known. 

The program for the parallel build-up algorithm was written in standard C with 
some extensions for the Intel iPSC/860 interprocessor communications.  No local 
linear algebra library routines were used. All results in Table 1 and Table 2 were 
obtained on the Intel iPSC/860 using 16 processors. However, the number of pro- 
cessors actually is scalable up to n - 1  for an n-atom cluster problem. Figure 2 
contains a performance example for the parallel build-up algorithm. The results 
were obtained by testing the algorithm with a 33-atom cluster problem on the In- 
tel iPSC/860  using different number of processors. From these results we see that 
the algorithm achieved a very good parallel efficiency, and should be suitable for 
massively parallel computation.  
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Table 2. Energy values obta ined  with different initial s t ructures .  

[ Energy Values for ~he Cluster of 72 Atoms [ 
X72 E energy value r emark  x72 E energy value r emark  

Ne(xl) -3.733492e+02 - N~(x37 ) -3.777450e+02 - 
Nr -3.764508e+02 - Nr -3.384696e+02 - 
N~(x3) -3.775487e+02 - Nr -3.781465e+02 - 
Ne(x4) -3.781454e+02 - Ne(x4o) -3.502306e+02 - 
Ne(xs )  -3.785242e+02 + Ne(x41) -3,775498e+02 - 
Nc(x6) -3.785238e+02 + N~(x42) -3.774477e+02 - 
N~(xT) -3.617191e+02 - Nr -3.785232e+02 + 
N~(x8) -3.786363e+02 + +  N~(x44) -3.774939e+02 - 
Nr -3.786357e+02 -b+ Ne(x45) -3.781461e+02 - 

Nc(xlO) -3,777808e+02 - N~(x46) -3.450495e+02 - 
N c ( x l l )  -3.771241e+02 - Ne(x47) -3.660463e-[-02 - 
Ne(xl2)  -3.777386e+02 - N~(x48) -3.777437e+02 - 
N~(x]3) -3.786348e+02 + +  Ne(x49) -3.203270e+02 - 
N~(x14) -3.130972e+02 - Nr -3.785237e+02 + 
N~(xls )  -3.781464e+02 - Nr -3.777447e+02 - 
Ne(x16) -3.774205e+02 - N~(x52) -3.592840e+02 - 
N~(xl7) -3.774489e+02 - N~(x53) -3.785238e+02 + 
Ne(xl8)  -3.774916e+02 -- N~(x54) -3.785241e+02 + 
N~(x19) -3.660453e+02 - Nr -3.785224e+02 + 
N~(x2o) -3.785221e+02 -{- N~(x56) -3.771202e+02 - 
N~(x21) -3.774491e+02 - Ne(x57) -3.786367e+02 + +  
N~(x22) -3.781450e+02 - N~(xss)  -3.785231e+02 + 
N~(x23 ) -3.777400e+02 - N~(x59) -3.785240e+02 + 
N~(x24 ) -3.150841e+02 - N~(x6o) -3.786363e+02 + +  
No(x25) -3.723044e+02 - N~(x61) -3.771241e+02 -- 
N~(x26) -3.777809e+02 - N~(x62) -3.533947e+02 - 
Ne(x27) -3.587070e+02 - Ne(x63) -3.785224e+02 + 
N~(x2s) -3.785232e+02 -}- N~(x64) -3,771230e+02 - 
N~ (x29) -3.411913e-{-02 - N~(x65) -3.615351e-{.-02 - 
N~(x3o) -3.774303e+02 - N~(x66) -3.786363e+02 + +  
N~(x31 ) -3.777796e-{-02 -- N~ (x67) -3.774823e+02 -- 
N~(x32) -3.777807e+02 -- N~(x68) -3.660451e+02 - 
N~(x33) -3.785235e+02 q- N~(x69) -3.786371e+02 -[-+ 
No(x34) -3.352482e+02 - Ne(xTo) -3.786367e+02 + +  
Ne(x35) -3.774214e+02 -- N r  -3.785229e+02 -4- 
N~(x36) -3.777800e+02 - 
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Figure 2. A p e r f o m n a n c e  e x a m p l e  f o r  t h e  p a r a l l e l  b u i l d - u p  a l g o r i t h m .  T h e  r e s u l t s  w e r e  o b t a i n e d  

b y  t e s t i n g  t h e  a l g o r i t l u n  w i t h  a 3 3 - a t o m  c l u s t e r  p r o b l e m ,  f o r  w h i c h  u p  t o  32  p r o c e s s o r s  c a n  b e  

u s e d .  
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3. Aniso trop ic  R a n d o m  Search 

In this section we describe the random search procedure used in Algorithm 1. The 
procedure is designed specifically to take advantage of initial structures constructed 
by the build-up process, so that short paths from these structures to the optimal 
solutions may possibly be found. Then hopefully, faster solutions can be obtained 
if better  initial structures can be constructed. Here by "better" we mean "closer" 
to the optimal structure. 

For a molecular cluster of n atoms, the initial structure assumed by the build-up 
process in Algorithm 1 always contains a big component with n - 1  atoms whose 
energy has been minimized in isolation. With the additional atom at a proper 
position, the structure can keep in low energy, and remain relatively stable. Hypo- 
thetically, such a structure may not be too far from the lowest energy structure, and 
the latter can possibly be obtained by making only small changes to the former. In 
addition, for the atoms in the (n-1)-atom component, those close to the additional 
a tom may need relatively big changes in their positions - the closer, the bigger, 
and the farther, the smaller. For these reasons, we must have a special anisotropic 
random search procedure to simulate proper structural changes and then obtain 
efficient solutions. 

We used for the random search a procedure called the anisotropic effective energy 
simulated annealing. The effective energy simulated annealing is a general random 
search method proposed in [4] for the energy minimization for molecular conforma- 
tion. The method combines the simulated annealing with a class of effective energy 
functions transformed from the original energy function based on the theory of 
renormalization groups [13, 23]. For the details about the simulated annealing, the 
effective energy and the effective energy simulated annealing, readers are referred 
to [1, 10, 22], [18, 19] and [4]. 

Figure 3 contains an outline for the effective energy simulated annealing algo- 
rithm, where x is referred to as the current solution, x+ the perturbed solution, Ax 
the random jump, s the random step, 4 the maximum number of random trials 
allowed at step k, Ak the step size control at step k, A and T control parameters. 
Function r a ndom[0 ,  1) returns a random number in [0, 1). 

In general, similar to simulated annealing, the effective energy simulated anneal- 
ing generates a sequence of random trials with decreasing the parameter  T from 
positive to 0. But in contrast to simulated annealing, the trials are not performed 
with the original energy function. Instead, for each T, the effective energy function 
fA,T defined as follows is used: 

fiA,T(X) = ~ hA~j,T(]]Xi -- xjl]), (4) 
i=l,j>i 

where A is called a sampling parameter  which can either be a scalar or a matrix.  
For the case of scalar, the subscript ij  can be removed from Aij. The function 
h~,T([]YH) with respect to any A and T is the pairwise effective energy function 
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A l g o r i t h m  2 

0 {Initialization} 

X - -  Xstar~ 

A1 = A s t a r t  

1 {Iteration} 

fo r  k -- 1 , . . . ,  m do  {cooling step} 

T=T~,  A = A k  

fo r  l = 1,. . . , lk do {random trial} 

x+ = x + A x = x + A k s  

i f /h ,T(X+)  ___ /A,T(X) 

X----X+ 

-- fA,T (x'{-)--/A,T (x) 
else  i f  e ~ST 

X--~X+ 

e n d  i f  

e n d  do  

c a l c u l a t e  Ak+l 

e n d  do  

{Effective Energy Simulated Annealing} 

> random[O,  1) 

Figure 3. The effective energy simulated annealing. 
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defined for given palrwise energy function h(IMI ) such that  

r~'"r (ll Yt~) j h(ll~'tt) 
e-  kBT = C), e -  kBT e -II(y-y')/;ql2 dy' (5) 

where kB is the Boltzmann c6nstant, and cA is a normalization factor such that 

cA j e -II(y-y')/All2 dy I = 1. (6) 

Note that  for any fixed y and T, 

lim ]t~,T(I]y[] ) ---- h(llyl] ). (7) 
A--+0 

Therefore, in the effective energy simulated annealing algorithm, the annealing 
process is applied to a sequence of effective energy functions obtained by changing 
values for A from positive to 0 as T ~ 0. The effective energy functions aver- 
age in some sense the original energy variations over small regions, and therefore 
are somehow smoother functions. But as A --+ 0, they become less smooth, and 
eventually converge to the original energy function. 

In [4], an isotropic effective energy simulated annealing algorithm, a version of 
Algorithm 2 with Ak and Ak set to scalars, was implemented, and tested with a set 
of small molecular conformation problems. The results showed that  the algorithm 
was more effective and efficient than a general simulated annealing method. How- 
ever, the algorithm can not directly be used for the build-up process in Algorithm 1, 
simply because that  the isotropic algorithm searches for solutions equally along all 
directions, which is not efficient, and not necessary, for the random search required 
by the build-up process. In terms of molecular conformation, the random search 
for the build-up should not make equal structural changes for all atoms, since oth- 
erwise, as we mentioned before, it will not be able to take advantage of the initial 
structures to obtain efficient solutions. 

It suffices to construct an anisotropic version of Algorithm 2 that  exploits special 
properties of the build-up process. To obtain such an algorithm, proper matrices for 
Ak and Ak need to be determined. In general, if Ak can be determined, values for 
Ak can be set proportional to, but  smaller than, those for Ak. General approaches 
to the determination of Ak, as studied in [20, 21], typically require expensive com- 
putations. But for the build-up process, Ak can simply be set to some values, as 
long as the resulting anisotropic random search makes special structural changes 
required by the process. 

Algorithm 3 in Figure 4 describes the major  strategies for computing Ak and Ak 
for the anisotropic version of Algorithm 2. In Algorithm 3, subscripts for Ak and 
Ak are removed since for all k the same strategies apply. However Ak and Ak are 
proportional to Tk. So, values for Ak and Ak decrease as Tk goes to 0. 

Using the strategies in Algorithm 3, A is set to a diagonal matrix,  whose ith 
diagonal element di is inversely proportional to the distance between atoms i and 
n in the initial structure (represented by x~ where atom n is the atom additional 
to the optimized (n-1)-atom component. With A determined this way, the random 
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search is forced to make large structural changes for the a toms closer to a tom n 
and small changes for others. For A, all its i j-elements are set to 0 if neither i nor 
j is equal to n, and all its in-elements are set proportional  to the step size di for all 
i < n. The reason for this is that  fluctuations between a toms i and j for i < j < n 
are supposed to be small, and only those between a toms i and n for all i < n need 
to be taken into account and sampled by the effective energy function. 

In our implementat ion for the anisotropic random search, the cooling schedule, 
the number  of random trials at each cooling step, the acceptance rate, etc. remained 
basically the same as the implementat ion for the isotropic effective energy simulated 
annealing in [4]. A local minimization also was applied at the very end of the search 
process. However, the start ing tempera ture  was set to a very low value to avoid 
large structural  perturbations.  Only l0 cooling steps were taken, and in total  about  
25n log 2 n function evaluations were conducted by the entire search. So for a cluster 
of 32 atoms, the total  number  of function evaluations for the anisotropic random 
search was about  5K, and for a cluster of 64 atoms, it was about  12K. 

4. C o n c l u d i n g  R e m a r k s  

We would like to point out that  the build-up idea for molecular conformation is 
not new. I t  was introduced in [8, 17] for some polypeptide chain conformation 
problems. Basically, the methods in [8, 17] tried to first minimize the energies of 
smaller fragments,  such as amino acids, and then combine the fragments  to obtain 
opt imal  structures for larger units. The polyhedral growth scheme in [9] was also 
a sort of build-up approaches. The basic build-up strategy in this scheme - to 
construct the opt imal  structure for the cluster of n a toms based on the opt imal  
structure for the cluster of n - 1  a toms - is also used by the prototype algori thm 
studied in this work. 

Compared with [8, 17], our study on the build-up method is for a more general 
purpose - to find general and systematic build-up procedures and develop efficient 
random search methods specific to the build-up procedures. As we have mentioned 
before, the prototype algorithm developed in this s tudy also is more general and 
robust than  the polyhedral growth scheme. 

We also want to mention that  for the anisotropic random search, especially the 
anisotropic simulated annealing, a general approach based on some statistical meth-  
ods was studied in [21]. However this approach involves computing for the step size 
control a covariance mat r ix  of random sampling at each cooling step. The compu- 
tat ion is typically in O(n21), where n is the problem dimension and 1 the number  
of random trials made at one cooling step. For an anisotropic effective energy 
simulated annealing procedure this approach could be costly since 1 is typically in 
O(n log 2 n). 

In conclusion on this work, we studied the build-up method for molecular con- 
formation,  and proposed a prototype algorithm. By exploiting the special proper- 
ties associated with the build-up process, an efficient random search procedure - 
anisotropic effective energy simulated annealing - was developed and used. The  al- 
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A l g o r i t h m  3 { Anisoiropic Random Search} 

1 {Step Size Control A}  

x+ = x + A x  

A x  = As 

A = d i a g ( d )  

d~ ~ 0 / l l x ~  - x~ ), 

dn = maxl_<i<n{dl} 

2 {Sampling Matrix A} 

A i j = O ,  Yi, j ,  i < j < n  

Ai,~ cx di ,  i = 1 , . . . ,  n--1 

i = 1 , . . . , n - 1  

Figure 4. AnJsotropic random search strategies. 
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gorithm was tested with some relatively large microcluster conformation problems. 
The results were effective. Especially, better solutions were found by the algorithm 
for the 72-atom Lennard-Jones microcluster. The algorithm also proved easy to 
parallelize and suitable for massively parallel computation. 

However, the build-up procedure in this study can only serve as a computational 
model. To extend the procedure to a variety of molecular conformation problems, 
e.g., the protein folding problem, still requires a lot more work. For example, 
in real applications, molecules may better be decomposed into many components 
with equal or not equal sizes. Then whether or not there is a general approach to 
combining components systematically and making efficient searches is not known. 
Also, the build-up method could be useful for solving a class of so-called "perturbed" 
protein folding problems - finding the most stable structures for proteins of known 
structures with some small components added, deleted, or changed. Research along 
this direction would be interesting to pursue. 
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